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ABSTRACT

The circadian clock controls daily rhythms in animal physiology,
metabolism, and behavior, such as the sleep-wake cycle.
Disruption of circadian rhythms has been revealed in many

diseases including neurodegenerative disorders. Interestingly,
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patients with many neurodegenerative diseases often show
problems with circadian clocks even years before other symptoms
develop. Here we review the recent studies identifying the
association between circadian rhythms and several major
neurodegenerative disorders. Early intervention of circadian

rhythms may benefit the treatment of neurodegeneration.
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Circadian transcription activators bind to the

1 Introduction

From hormone secretion to immune response,

from locomotor activity to learning and
memory, most of our bodily functions are under
control of the circadian clock [1-4]. The
molecular clocks enable animals to anticipate
daily environmental changes and adjust their
physiology and behavior. Studies in several
model organisms, especially fruit flies and mice,
reveal the fundamental mechanism of the
circadian clock, which is a conserved negative

transcription-translation feedback loop [2-6].
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promoter region of clock-controlled genes and
activate their rhythmic transcription in different
tissues. Among these clock-controlled genes,
some are critical circadian repressors. These
repressor proteins gradually accumulate in the
cytoplasm and provide negative feedback to
this loop through inhibition of the activators on
their own transcription [2-6]. In flies, CLOCK
(CLK) and CYCLE (CYC) are the main
transcription activators, while PERIOD (PER)
and TIMELESS (TIM) are the key repressors
(Fig. 1). TIM also functions as crucial protein for
light entrainment in flies, as light triggers the
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degradation of TIM and resets the molecular
clock. In addition to the core feedback loop,
there is also a second loop to fine control the
expression of clk by VRI and PDP1e [6-10]. The
organization of the molecular clock is highly
conserved among animals, as in mice BMAL1
and CLK activate the main inhibitors PER and
CRYPTOCHROME (CRY). A similar organiza-
tion of another feedback loop is also found in
mammals [2, 3, 11-15]. There are three basic
parameters of the circadian clock which are
period, amplitude, and phase (Fig. 1). Circadian
period indicates the pace/speed of the
endogenous clock, which is approximately 24
hours in wildtype animals. Amplitude represents
the range of circadian oscillation (calculated by
difference between the average level and peak/
trough), which reflects the robustness of circadian
rhythm. Phase reflects the synchronization of
the molecular clock to the environment [16].
With the rapidly increasing aging population,
neurodegenerative disorders become remark-
able health issues. Neurodegeneration can affect
many brain regions, including the basal ganglia,
the cerebellum, or the spinal cord, and the

Amplitude
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diseases that cause neurodegeneration can be
grouped into cognitive neurodegeneration (also
known as dementia) or motor neurodegenera-
tion (also known as movement disorder, or in
some cases ataxia) [17]. The most common
dementia-causing disease is Alzheimer’s disease
(AD). In 2017, 7.5 million people in the United
States alone suffered from AD, and that number
is predicted to rise to 8.4 million by 2030.
Parkinson’s disease (PD) is also a common
neurodegenerative disorder that affected at least
630,000 people in 2017, and that number is
expected to double by 2050. Neurological
diseases (including ataxias, dementias, back
pain, migraines, epilepsy, and others) are
estimated to cost the US economy approxi-
mately $780 billion annually [18]. Even though
different neurodegenerative diseases may have
different manifestations of symptoms, it is
worth noting that most neurodegeneration will
eventually cause cognitive decline [19].
Circadian rhythm disruptions can be caused
by defects of the main components of circadian
rhythms, core clock, the

including input

pathway for environmental entrainment, and

@

Fig. 1 Interaction of circadian clocks and neurodegeneration. Circadian rhythms are generated by a conserved negative transcriptional

translational feedback loop. Transcription activators (CLK/CYC, red) bind and activate rhythmic transcription of clock-controlled genes.
PER and TIM (blue ovals) are critical circadian repressors that accumulate in the cytoplasm and inhibit their own transcription. Circadian
rhythms disruption is often shown as amplitude dampening of circadian oscillation, changing of circadian period, and shifting of circadian
phase (dashed lines). A tight association is found between disruption of circadian rhythms and neurodegeneration. The bidirectionality
between circadian rhythms and two major symptoms of neurodegenerative diseases (movement disorder and dementia) is focused in this

review.
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the output pathway. Decline in circadian
rhythms has been well documented in aging
populations [20, 21]. Even though there is no
definitive conclusion about casual effects of
circadian rhythm disruption and neurode-
generation, it is clear that a bidirectional
association between disruption of circadian
clocks and neurodegenerative disorders exists.
In the following part, we will review the recent
studies and discuss this bidirectionality.

2 Neurodegenerative disorders leading to
circadian rhythm complications

One of the most prominent outputs of circadian
clocks is sleep-wake cycles. Sleep disruptions in
patients with neurodegenerative disorders (NDs)
may not be a priority for patients, and often go
undiagnosed [22]. These sleep problems are
now understood to have greater implications in
neurodegenerative diseases than previously
believed, and may become a more common
topic of conversation between doctors and
patients. However, while sleep is the most
obvious and commonly known output of
circadian rhythms, there are other parts of
circadian rhythms that have major implications
for our daily health and functioning [23], and
more research is indicating that maintaining
robust circadian rhythms is an important factor
in long term health [24]. For example, endocrine
function can be inhibited by irregular circadian
rhythms, which is unsurprising according to the
role melatonin plays in the endocrine system
[25]. In mammals, it has been found that
regulated circadian rhythms allow the immune
highest
interaction with a pathogen during the day,

system to anticipate the risk of

suggesting a deeply evolved trait [26, 27].
2.1 Dementias

Dementias are neurodegenerative diseases that
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affect the central nervous system causing
cognitive decline, and are often associated with
aging [28]. One of the major symptoms for AD
is severe dementia. AD is a neurodegenerative
disease resulting from an accumulation of
amyloid-beta (AP) peptide in the brain. This
accumulation is correlated with increased
wakefulness and disruptions in sleep patterns
[29, 30]. Patients with AD experience more
severe sleep disruptions than healthy age-
matched controls [28] and experience a phase
delay in their sleep [31]. The suprachiasmatic
nucleus (SCN), is the central pacemaker for
mammalian circadian systems and has been
implicated in many neurodegenerative diseases
[32]. Recent evidence in mice models has shown
that the circadian clock influences plaque
formation and AP activity. Researchers knocked
out the core clock gene Bmall in various mouse
brain regions and found that normal amyloid
beta oscillations were diminished in the
whole-body knockout, but not when the
knockout was restricted in brain regions
excepting the SCN. This indicated the SCN is
important for regulating amyloid beta aggregates
in the brain [33]. Importantly, AD patients
sustain significant loss of SCN neurons, which
is also correlated to circadian motor activity [34,
35]. In mice models of AD, similar to AD
patients, the SCN was also degenerated and
dysfunctional, though the mechanism is still
unclear [36]. Patients with AD often exhibit
sundowning, which is typically characterized
by erratic behavioral symptoms in the afternoon
or evening. One study proposed there may be a
bidirectional relationship between sundowning
and an altered circadian clock (including
reduced amplitude). This study also found that
some AD patients experience a phase shift in
core body temperature oscillations, which are
regulated by the circadian clock [37].

Melatonin participates in a temporally strict
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clock gene regulation pathway via the
[38,39], and
melatonin levels oscillate according to the time
of day [40].

disturbed and irregular in AD patients as the

mammalian pars tuberalis

This oscillation can become

disease progresses. Melatonin is necessary for
regulation of sleep and circadian rhythms in
humans and has been shown to promote brain
resilience  against neurodegeneration in
transgenic mice. When the transgenic AD mice
were given 10 mg/kg of melatonin per day for 6
found this

significantly reduced the cognitive impairment

months, researchers treatment
seen in the AD mice [41]. Melatonin has also
been shown to have neuroprotective effects in
mice treated with scopolamine, which is known
to induce AD-like dementia [42].

melatonin concentrations are also strongly

Serum

correlated with body temperature, mood, and
performance [43]. Growing evidence indicates
that disruption of melatonin secretion rhythms,
including amplitude, peak phase and total
abundance is related with dementia, AD and
mild cognitive impairment patients [44]. Based
on a pioneer study comparing post-mortem
human pineal, the circadian difference of
melatonin abundance (day wvs. night) was
abolished in AD [45]. The level of melatonin
detected from post-mortem pineal gland or
cerebrospinal fluid was also significantly
decreased in AD compared to age matched
control [45, 46]. In patients with dementia, the
probability to exhibit disruptions of melatonin
rhythm (mainly due to the relative low
abundance of melatonin at night) is higher than
healthy people [47]. However, some studies also
identified contradictory results about changes of
melatonin levels in AD and patients with mild
cognitive impairment (MCI) [48]. Melatonin
concentrations can be higher than controls
during the daytime in AD and MCI patients

potentially due to an advanced melatonin phase

Brain Sci. Adv.

[28,49,50], and a clinical study found that
increased daytime serum melatonin levels in
patients with AD did not decrease with
exposure to bright light as it did in healthy
controls, which the researchers suggested is
related to the neurodegenerative progression of
the disease [50]. Higher serum melatonin
concentrations during the daytime can lead to
increased self-reported fatigue and sleepiness
[43]. In addition, plasma melatonin concentra-
tions did not decline in healthy older adults
adult
indicating that reduced melatonin concentra-

compared to healthy young men,
tions are not a normal part of aging [51].
Frontotemporal dementia (FTD) is a group of
dementias, which is characterized by selective
degeneration of the frontal lobe of the brain.
FITD can be difficult to distinguish from
Alzheimer’s, but researchers found a way to
distinguish by examining early sleep distur-
bance and circadian rhythms. They also found
an increase in nighttime activity and a decrease
in morning activity in FTD patients, as well as
decreased total sleep [52]. Another study
identified that while FTD patients had normal
body temperature variations, they had altered
circadian rhythms. These circadian rhythm
alterations, as well as sleep fragmentation, may
been

have caused by deficiencies in

cerebrospinal fluid (CSF) orexin levels [53].
2.2 Ataxias and polyglutamine disorders

Movement problems are another common
indication of neurodegenerative disorders,
which are triggered by defects in the peripheral
nervous system. Ataxias are a class of
neurodegenerative diseases that are charac-
terized by impaired mobility. They are divided
into subgroups including hereditary (autosomal
dominant or autosomal recessive) and non-
hereditary (acquired or sporadic degenerative)

ataxias [54].
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The abnormal CAG repeat is a form of
inherited trinucleotide repeat expansion known
as polyglutamine, and has been associated with
six types of ataxias (including Spinocerebellar
ataxia type 2, SCA2), spinal bulbar muscular
atrophy (SBMA), dentatorubral-pallidoluysian
atrophy (DLPRA), and Huntington’s disease
(HD). Polyglutamine disorders affect a single
protein and though that protein may be
expressed widely [55], the disorder often only
damages specific cluster of neurons (irregular
gene expression in the SCN has also been
implicated in HD) [20, 56]. This causes specific
symptoms that may overlap between diseases
but also have distinctive symptoms. Gene
transcription has also been linked to the
function of polyglutamine disorders and a
review paper highlights the implications of
transcription being related to CAG repeats [55].

There are over 40 types of SCAs, and many
to be
polyglutamine expansions, untranslated repeat

are understood caused by either
expansions in non-coding regions, or point
mutations [54,57]. SCA2 has been studied
extensively. SCA2 is a neurodegenerative
disorder that contains an abnormal expansion of
the CAG repeat in the Ataxin gene. Severity of
SCA2 increases with length of expansions and
dependent on length [58, 59].
SCA2 patients
significant reduction in rapid eyes movement
(REM) sleep and REM sleep density [60].

Similarly, Huntington’s disease results from

thus is

Interestingly, also have a

an expansion of the CAG repeat in a region of
the HTT, or Huntingtin gene [61]. It causes both
motor and non-motor defects, and usually has a
midlife onset. In transgenic HD mice models,
current-clamp recording showed that brain SCN
neurons have decreased daytime firing rates
when compared to wildtype mice [59, 62]. Sleep
physiology and brainwave alterations precede
other phenotypic changes in R6/1 transgenic
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mice, a common model for Huntington’s disease
[63]. Sleep disturbances have been displayed in
humans as well, shown by increased fragmenta-
tion of sleep and a decrease in REM sleep [64].
The length of CAG repeat has some predictive
power over age of HD onset and how HD
progresses, according to analysis of the data
collected by Enroll-HD, a cohort of HD patients
[65]. Because of this
Huntington’s disease provides researchers with

predictive power,
an opportunity to confirm the role of circadian
rhythms and sleep behavior in physiological
processes by examining their progressive loss in
longitudinal studies [22].

Parkinson’s disease (PD) is not a CAG-repeat
disorder, but is characterized by primarily
motor defects caused by alpha-synuclein in cell
bodies (though Parkinson’s disease dementia
affects approximately 75%-90% of PD patients
duration) [66].
Mitochondrial DNA mutations contribute to

after a ten-year disease
mitochondrial disfunction and aging, and have
been causally implicated in disease patho-
genesis, related to oxidative
stress [67].

Parkinson’s disease patients don’t typically

potentially

experience a circadian phase shift of activity,
but there is a reduction in the amplitude of
circadian rhythms. Sleep-wake disturbances
affect 80% of PD patients. In addition, studies
looking at melatonin levels found no changes in
the oscillation periods of melatonin, but did find
an overall decrease in melatonin amplitude [68,
69] though this may be due in part at least to
dopaminergic treatments [27]. While using an
alpha-synuclein overexpressing (ASO) trans-
genic mouse line as a model to examine
circadian rhythms in Parkinson’s patients,
researchers found that as the ASO mice aged,
the severity of the circadian disruptions
increased, indicated by compromised amplitude

of their circadian rhythms and fragmentation in
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their rest/activity rhythms [62].

3 Circadian disruptions
neurodegeneration

leading to

While circadian disruptions are often considered
to be symptoms of neurodegenerative diseases,
recent evidence has shown that circadian
disruptions (CDs) can often precede onset of
other neurodegenerative symptoms in several
types of neurodegenerative disorders (ND)
patients by years. This has caused researchers to
look at circadian rhythm disruptions in a
different light: rather than being just a symptom
of NDs, perhaps CDs play a more active role in
the origination of the diseases. As mentioned
above, circadian rhythms are not solely
presented as sleep, but also hormone release
and core body temperature oscillations [27].
While circadian rhythms are responsible for the
timing of the sleep-wake cycle, disruptions in
circadian rhythms are distinct from disruptions
in sleep. The two can be distinguished by
circadian rhythm biomarkers such as melatonin.
There are also sleep disorders that are not a
result of any differences in circadian rhythms.
Researchers found that period, a key circadian
pacemaker gene in Drosophila melanogaster, may
provide neuroprotective effects in aging flies.
These researchers produced double mutant flies
with a null period gene and a gene that
increases neurodegeneration proclivity in flies.
Accelerated aging and neuronal degeneration
were found in the double mutants, despite the
two genes participating in different expression
pathways [70]. Another mutation results in the
(FFI), first

described in 1986 and found to cause specific

disease fatal familial insomnia
degeneration of the thalamus region [71]. The
prion disease, which leads to patient death after
13 months on average, is caused by a mutation
in the human prion protein (PrP) gene. This

Brain Sci. Adv.

results in gradually increasing loss of the
circadian rhythm in the secretion of melatonin
and the growth hormone prolactin, as well as
severe insomnia [72].

While there are other important outputs of
the circadian rhythm, sleep is the most
significant. REM behavior disorder (RBD) is a
sleep disorder characterized by loss of muscle
atonia during REM sleep. This results in
their
occasionally hurting themselves or others. An
estimated 80%—-90% of patients with RBD are at
risk for developing an ND, most commonly a

patients acting out dreams and

synucleinopathy [73, 74]. A majority of
idiopathic RBD cases that are comorbid with
development of a ND are synucleinopathies.
Why RBD and synucleinopathies are so strongly
correlated is unknown [75]. One follow-up
study on patients diagnosed with RBD found
that nearly 81% of those patients developed
either a Parkinsonism or a dementia (n = 26)
[76].

Environmental factors, particularly shift work,
have been linked to an increased likelihood of
developing neurodegenerative diseases [27].
While light is the main input, or zeitgeber, for
the circadian rhythm, alternative inputs include
social interactions, eating and exercise [23].
Circadian rhythm disruption, which is
commonplace for those who work night shifts,
may increase likelihood for developing AD, and
the increased prevalence of night shifts in
today’s society could have significant implications
for Alzheimer’s disease in the future [77].

An interesting area of research is studying the
chronotypes and rhythmicity of polar populations.
Though more work needs to be done to
understand how polar populations develop
neurodegenerative disorders, there have not
been studies indicating a significant reduction
in sleep time, but studies that indicate a phase

delay in winter months, when it is dark for two

https://mc03.manuscriptcentral.com/brainsa | Brain Science Advances

www.manaraa.com



Brain Sci. Adv.

months [78]. There is evidence for increased
depressive symptoms during winter months at
more northern populations (n = 952), but no
research yet on how frequently polar
populations may develop neurodegenerative
diseases compared to non-polar populations
[79].

Light pollution and the increased availability
and prevalence of artificial light have caused
concern for researchers looking at sleep and
health. One study found that in Drosophila,
short-term nocturnal exposure to dim lighting
disrupted circadian rhythmicity and accelerated
neurodegeneration in AD fly models [80]. The
study, which was done in 2018, is an interested
lead-in for potential longitudinal studies in
mammals or even humans exposed to dim
lighting during nighttime (like those who live in
cities) to determine proclivity for developing
NDs.

4 Summary

Even though some discrepancies of changes for
specific markers such as melatonin rhythms
have been observed, there is no doubt that clear
association between circadian rhythm disruption
with neurodegenerative disorders exist. In the
future, more research needs to be conducted to
better
rhythms

understand the role that circadian

have in disease progression or
prediction. The literature has pointed toward a,
"which came first, the chicken or the egg?"
problem that will require some cleverly
designed experiments to determine the answer
to. For example, sleep disturbances may be
caused by neurodegeneration of the sleep
modulating structures [81]. The next major step
in the field is to determine whether the
neurodegenerative disease or the circadian
disruptions came first in the lives of the millions

of patients living with NDs. Together, these
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conclusions indicate bidirectionality in the

disease onset and progression and the

regulation of circadian rhythms.
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